Power to Heat

Competition or Interaction between Electricity and District Heating?

Paul-Frederik Bach
http://pfbach.dk/

ERA NET - Salzburg
14 May 2013
CHP¹ and Wind – Elements of Danish Energy Policy

- Thermal efficiency of CHP: about 90%
 - The CHP process serves 50% of all space heating in Denmark and 65% of the thermal electricity production

- Wind energy production was 28% of the electricity consumption in 2012
 - The national target for 2020 is 50% wind energy

- **CHP and wind are competing for a limited electricity demand**

The thermal power plants are losing market shares and money

Thermal power plants are being closed or mothballed

How are the prospects for 2020?

¹ CHP: Combined Heat and Power
Electricity Surplus during Cold Seasons

- CHP covers a major part of the electricity consumption during the winter

- Wind power causes electricity surplus in winter and less need for alternative supply during summer

- So Denmark has a need of having electricity moved between winter and summer

- For the time being an essential part is set off by export and import
Future Balancing Services in Short Supply

- ENTSO-E expects 125 GW additional wind power capacity in Europe
- The plans for the necessary balancing capacity are vague in most countries
- The Danish strategy is based on both international and domestic initiatives

- Statnett prepares for another great Norwegian export business
 - The Norwegian investment is expected to be 12-20 billion NOK
 - The capacity of the new interconnectors (up to 7 GW) will be modest compared with the 125 GW
- Balancing services will be a seller’s market

Wind Power - ENTSO-E: EU scenario

Statnett prepares for another great Norwegian export business

- The Norwegian investment is expected to be 12-20 billion NOK
- The capacity of the new interconnectors (up to 7 GW) will be modest compared with the 125 GW

Balancing services will be a seller’s market

ENTSO-E expects 125 GW additional wind power capacity in Europe
The plans for the necessary balancing capacity are vague in most countries
The Danish strategy is based on both international and domestic initiatives

Statnett prepares for another great Norwegian export business
- The Norwegian investment is expected to be 12-20 billion NOK
- The capacity of the new interconnectors (up to 7 GW) will be modest compared with the 125 GW

Balancing services will be a seller’s market
Hourly variations

Consumption and Production: January 2011

Production surplus is typical for January
Wind Power scaled up to 50% of Annual Electricity Consumption

Electricity from the CHP process and from wind
- again with January as an example

- This picture does not look realistic
 - The production in January exceeds consumption by 62%
 - The electricity overflow is 6.8 TWh for a year - or 40% of the wind energy
 - Up to 7,000 MW export capacity will be needed
 - Germany and Denmark will have overflow simultaneously
Low Market Prices force CHP Production down

In this case 55% of heat demand in January is covered by backup boilers
A certain minimum thermal production is maintained for security reasons

- For a full year:
 - Backup boilers have taken over 24% of the heat production
 - Electricity overflow reduced from 40% of the wind energy to 17%
 - The need for export capacity reduced by 2,600 MW
- This picture is more realistic – but bad news for the CHP business
Case 3 (of 3)

Electricity converted to Heat

Add 900 MW large heat pumps and 1,500 MW electric boilers
- introducing additional controllable electricity consumption

For the full year:
- The backup boilers’ share of the heat supply reduced from 24% to 5%
- Electricity overflow reduced from 17% to 4% of the wind energy
 - Thus CHP has absorbed 90% of the electricity overflow from case 1

Coordination of electricity and heat is an efficient domestic measure for balancing variations from renewable energy
Lessons Learned from the Cases

- Increasing surplus of electricity to be expected during the cold season
 - Stronger competition for sale of electricity
 - Decreasing electricity production from power plants
 - Further decrease of CHP production
- Thermal plants are mainly serving as wind power backup
 - Decreasing power plant utilization
 - Poor economy
 - Uncertainty about the future and reluctance in investment decisions
 - Probably further closure of large and local power plants
- The CHP systems can offer flexibility to the power system
 - Surplus of electricity can be used for heating
 - The CHP plants can increase the electricity production when needed and store the heat for later use
 - The range of facilities in the electricity market have made it possible
- Phasing out CHP means lost flexibility and lost efficiency

Flexibility, a new business opportunity for CHP systems?
- depending on the regulatory framework and the electricity market
The Present Situation in Denmark

- During a long period the use of electricity for heating was unacceptable
 - Electric heating was prevented by high duties
- This policy was not sustainable
 - Negative spot prices indicated inefficient electricity markets
 - A considerable share of the wind energy was exported

More flexibility by integrating electricity with heat and gas
- Since 2008 a special legislation allowed large electric heaters
- 325 MW large electric heaters installed so far
- Another legislation is expected to pave the way for large heat pumps
The Need for Further Research

- Analyse and understand results from existing total energy concepts
- Estimate technical potential for installation of large heat pumps
 - Large heat pumps seem to require complex concepts
- Develop operational control of complex energy systems
 - Communication systems (the Danish CHPCOM project)
- Development and maintenance of models for analysis and simulation
 - Should reflect all relevant concepts and their operational constraints
 - Should demonstrate operational conditions, flexibility, security of supply etc.
- Analyse economy of complex energy systems
 - Avoid investments in CHP systems with poor chances of survival
 - Estimate an optimal combination of large heat pumps, electric heaters and heat accumulators
 - Estimate the need for supporting mechanisms in order to maintain CHP production at a desired level
Paul-Frederik Bach
http://pfbach.dk/

Brædstrup Total Energy Concept
- CHP: 7 MW/8 Mj/s
- Boilers: 24 Mj/s
- Solar heat: 18,600 m²
- Hot water tanks: 7,500 m³
- Borehole storage
- Heat pump: 1,5 Mj/s
- Electric boiler: 10 Mj/s